大约有 40,000 项符合查询结果(耗时:0.0250秒) [XML]

https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/cpp/1373.html 

C++智能指针的设计和使用 - C/C++ - 清泛网 - 专注C/C++及内核技术

...l; if (--ptr->use == 0) delete ptr; } // 获取数据成员 int *get_ptr() const { return ptr->ip; } int get_int() const { return val; } // 修改数据成员 void set_ptr(int *p) const { ptr-...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络,如第一个图,我们输入的样本是有...