大约有 3,000 项符合查询结果(耗时:0.0127秒) [XML]

https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/tech/1336.html 

推荐系统算法初探 - 更多技术 - 清泛网 - 专注C/C++及内核技术

...存在关键字体育、足球、英超,显然匹配前两个词都不如直接匹配英超来得准确,系统该如何体现出关键词的这种“重要性”呢?这时我们便可以引入词权的概念。在大量的语料库中通过计算(比如典型的TF-IDF算法),我们可以...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...是编码code了。因为是无标签数据,所以误差的来源就是直接重构后与原输入相比得到。 2)通过编码器产生特征,然后训练下一层。这样逐层训练: 那上面我们就得到第一层的code,我们的重构误差最小让我们相信这个co...
https://www.tsingfun.com/it/cp... 

内存管理内幕:动态分配的选择、折衷和实现 - C/C++ - 清泛网 - 专注C/C++及内核技术

...部是空闲的、开放的内存。然后,当通过 free() 将该指针传递回来时,我们只需要倒退几个内存字节就可以再次找到这个结构。 在讨论分配内存之前,我们将先讨论释放,因为它更简单。为了释放内存,我们必须要做的惟一一...