大约有 4,000 项符合查询结果(耗时:0.0083秒) [XML]

https://www.tsingfun.com/it/da... 

OceanBase使用libeasy原理源码分析:服务器端 - 数据库(内核) - 清泛网 - ...

...端发送握手包,同时接受客户端发送过来的用户名密码等信息,最后进行服务器端的验证,这几次 //交互过程是不经过libeasy网络框架的 handler_.on_connect = ObMySQLCallback::on_connect;<br>// 用于当请求处理完毕后,告诉工作线程不要再...
https://www.tsingfun.com/it/tech/1410.html 

Logstash实践: 分布式系统的日志监控 - 更多技术 - 清泛网 - 专注C/C++及内核技术

...些可以修改,有些不允许修改。host记录的是当前主机的信息。Logstash可能不会去获取主机的信息或者获取的不准确,这里建议替换成自己定义的主机标示,以保证最终的日志输出可以有完美的格式和良好的可读性。 3.4 编写Indexe...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...
https://www.tsingfun.com/it/bi... 

Deep Learning(深度学习)学习笔记整理系列之(四) - 大数据 & AI - 清泛...

...输入数据的最重要的因素,就像PCA那样,找到可以代表原信息的主要成分。 具体过程简单的说明如下: 1)给定无标签数据,用非监督学习学习特征: 在我们之前的神经网络中,如第一个图,我们输入的样本是有...