大约有 6,000 项符合查询结果(耗时:0.0280秒) [XML]

https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注C++内核技术

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bigdata_ai/341.html 

搭建高可用mongodb集群(二)—— 副本集 - 大数据 & AI - 清泛网 - 专注C/...

...a/mongodbtest/replset/data --replSet repset 可以看到控制台上显示副本集还没有配置初始化信息。 Sun Dec 29 20:12:02.953 [rsStart] replSet can't get local.system.replset config from self or any seed (EMPTYCONFIG) Sun Dec 29 20:12:02.953 [rsStart] replSet info you may...
https://www.tsingfun.com/it/tech/1894.html 

Swift 编程语言入门教程 - 更多技术 - 清泛网 - 专注C/C++及内核技术

...所有在 "?" 之后的都会自动忽略,而整个表达式是 nil 。另外,可选值是未包装的,所有 "?" 之后的都作为未包装的值。在两种情况中,整个表达式的值是可选值。 let optionalSquare: Square? = Square(sideLength: 2.5, name: "optional square") let...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升

...是诸如随机森林(或提升树)之类的集成方法的切入点。另外,随机森林经常是很多分类问题的赢家(通常比支持向量机好上那么一点,我认为),它快速并且可调,同时你无须担心要像支持向量机那样调一大堆参数,所以最近...