大约有 47,000 项符合查询结果(耗时:0.0687秒) [XML]
How to get subarray from array?
I have var ar = [1, 2, 3, 4, 5] and want some function getSubarray(array, fromIndex, toIndex) , that result of call getSubarray(ar, 1, 3) is new array [2, 3, 4] .
...
How can I get a Bootstrap column to span multiple rows?
...
For Bootstrap 3:
<link href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css" rel="stylesheet"/>
<div class="row">
<div class="col-md-4">
<div class="well">1
...
Passing a list of kwargs?
...
answered Sep 30 '09 at 6:11
PeterPeter
108k4646 gold badges166166 silver badges203203 bronze badges
...
Adding a new array element to a JSON object
...eamId":"1","status":"pending"},{"teamId":"2","status":"member"},{"teamId":"3","status":"member"}]}';
var obj = JSON.parse(jsonStr);
obj['theTeam'].push({"teamId":"4","status":"pending"});
jsonStr = JSON.stringify(obj);
// "{"theTeam":[{"teamId":"1","status":"pending"},{"teamId":"2","status":"member...
Regex how to match an optional character
...
You could improve your regex to
^([0-9]{5})+\s+([A-Z]?)\s+([A-Z])([0-9]{3})([0-9]{3})([A-Z]{3})([A-Z]{3})\s+([A-Z])[0-9]{3}([0-9]{4})([0-9]{2})([0-9]{2})
And, since in most regex dialects, \d is the same as [0-9]:
^(\d{5})+\s+([A-Z]?)\s+([A-Z])(\d{3})(\d{3})([A-Z]{3})([A-Z]{3})\s+([A-Z])\d{3}(...
How to get the last N rows of a pandas DataFrame?
...
3 Answers
3
Active
...
how to “reimport” module to python then code be changed after import
...
For Python 2.x
reload(foo)
For Python 3.x
import importlib
import foo #import the module here, so that it can be reloaded.
importlib.reload(foo)
share
|
impro...
Why does base64 encoding require padding if the input length is not divisible by 3?
...
3 Answers
3
Active
...
How to concatenate strings with padding in sqlite
...
3 Answers
3
Active
...
How to group dataframe rows into list in pandas groupby?
..., 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
...