大约有 1,195 项符合查询结果(耗时:0.0087秒) [XML]
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...
如何选择机器学习算法 - 大数据 & AI - 清泛网移动版 - 专注IT技能提升
...且就算数据在原特征空间线性不可分,只要给个合适的核函数,它就能运行得很好。在动辄超高维的文本分类问题中特别受欢迎。可惜内存消耗大,难以解释,运行和调参也有些烦人,所以我认为随机森林要开始取而代之了。
...