大约有 47,000 项符合查询结果(耗时:0.0417秒) [XML]
Single Line Nested For Loops
...f the list comprehension (here (x,y)):
>>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
[(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]
It's exactly the same as this nested for loop (and, as the tutorial says, note how the order of for and if are the same).
>>>...
WinDBG用法详解 PDF - 文档下载 - 清泛网 - 专注C/C++及内核技术
...DBG具有非常大的灵活性和可扩展性,用来满足各种
第30章WinDBG用法详解...................................................................................................1
30.1工作空间......................................................................................
Reorder levels of a factor without changing order of values
...f <- data.frame(f = 1:4, g = letters[1:4])
df
# f g
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
levels(df$g)
# [1] "a" "b" "c" "d"
df$g <- factor(df$g, levels = letters[4:1])
# levels(df$g)
# [1] "d" "c" "b" "a"
df
# f g
# 1 1 a
# 2 2 b
# 3 3 c
# 4 4 d
...
Why does SIGPIPE exist?
...|
edited Oct 26 '16 at 9:13
Ton van den Heuvel
8,39155 gold badges3434 silver badges7575 bronze badges
a...
What is the most efficient way to create a dictionary of two pandas Dataframe columns?
...ies(df.Letter.values,index=df.Position).to_dict()
Out[9]: {1: 'a', 2: 'b', 3: 'c', 4: 'd', 5: 'e'}
Speed comparion (using Wouter's method)
In [6]: df = pd.DataFrame(randint(0,10,10000).reshape(5000,2),columns=list('AB'))
In [7]: %timeit dict(zip(df.A,df.B))
1000 loops, best of 3: 1.27 ms per loo...
Rspec: “array.should == another_array” but without concern for order
...
answered Jun 5 '10 at 3:08
x1a4x1a4
18.6k44 gold badges3737 silver badges3838 bronze badges
...
Split delimited strings in a column and insert as new rows [duplicate]
...her way of doing it..
df <- read.table(textConnection("1|a,b,c\n2|a,c\n3|b,d\n4|e,f"), header = F, sep = "|", stringsAsFactors = F)
df
## V1 V2
## 1 1 a,b,c
## 2 2 a,c
## 3 3 b,d
## 4 4 e,f
s <- strsplit(df$V2, split = ",")
data.frame(V1 = rep(df$V1, sapply(s, length)), V2 = ...
std::next_permutation Implementation Explanation
...
Let's look at some permutations:
1 2 3 4
1 2 4 3
1 3 2 4
1 3 4 2
1 4 2 3
1 4 3 2
2 1 3 4
...
How do we go from one permutation to the next? Firstly, let's look at things a little differently. We can view the elements as digits and the permutations as numbers. ...
Select multiple columns in data.table by their numeric indices
... all just work:
library(data.table)
dt <- data.table(a = 1, b = 2, c = 3)
# select single column by index
dt[, 2]
# b
# 1: 2
# select multiple columns by index
dt[, 2:3]
# b c
# 1: 2 3
# select single column by name
dt[, "a"]
# a
# 1: 1
# select multiple columns by name
dt[, c("a", ...