大约有 2,000 项符合查询结果(耗时:0.0097秒) [XML]

https://www.fun123.cn/reference/iot/ble_spp.html 

功耗蓝牙(BLE) 和 经典蓝牙(SPP) 的区别 · App Inventor 2 中文网

...LE) 经典蓝牙(SPP 串行端口协议) 蓝牙版本 蓝牙版本 >= 4.0,又称蓝牙功耗、蓝牙智能 经典蓝牙2.0 或更早版本,经典配对模式在两台蓝牙设备之间建立虚拟串口数据连接,提供一种简单而直接的数...
https://bbs.tsingfun.com/thread-1393-1-1.html 

【BLE技术内幕】BLE技术揭秘 - 创客硬件开发 - 清泛IT论坛,有思想、有深度

...E是功耗蓝牙的英文缩写(Bluetooth Low Energy),是蓝牙4.0版本起开始支持的新的、功耗版本的蓝牙技术规范。蓝牙技术联盟(Bluetooth SIG)在2010年发布了跨时代的蓝牙4.0,它并不是蓝牙3.0的简单升级版本,而是全新的技术架构...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...
https://www.tsingfun.com/it/bi... 

如何选择机器学习算法 - 大数据 & AI - 清泛网 - 专注IT技能提升

...rful enough to provide accurate models. 如果是小训练集,高偏差/方差的分类器(比如朴素贝叶斯)要比偏差/高方差的分类器(比如k最近邻)具有优势,因为后者容易过拟合。然而随着训练集的增大,偏差/高方差的分类器将开始...